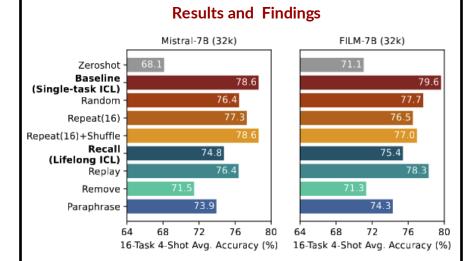

Stress-Testing Long-Context Language Models with Lifelong ICL and Task Haystack

Xiaoyue Xu^{*}, Qinyuan Ye^{*}, Xiang Ren 🖂 xiaoyue.xu.me@gmail.com {qinyuany, xiangren}@usc.edu

USC University of Southern California

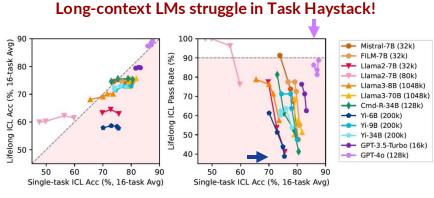


- We evaluate long-context LMs using Lifelong ICL and Single-task ICL prompts respectively.
- The model passes when performance of Lifelong ICL is not significantly worse than Single-task ICL.
- To pass the test, the model need to locate and make use of the relevant ICL demonstrations (the "needle") in the lengthy Lifelong ICL prompt (the "task haystack").

Part 2: Uncovering Limitations of Long-Context LMs

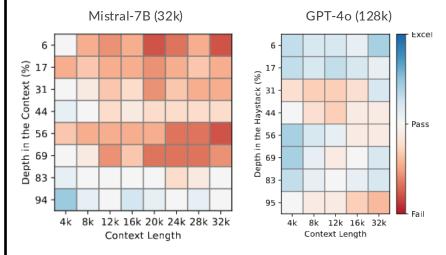
Controlled Settings

Satting	Input Prompt Example					Controlled Factors		
Setting						Long Ctx.	Distraction	Recency
Baseline (Single-task ICL)	T1 Train	T1 Test				×	×	\checkmark
Random	Random 7	fext T1 T	rain T1 T	lest		✓	✓	~
Repeat	T1 Train	T1 Train	T1 Train	T1 Test		✓	×	\checkmark
Repeat+Shuffle	T1 Train	🛪 T1 Tra	ain 🗙 T1 '	Train T1	Test	✓	×	\checkmark
Recall (Lifelong ICL)	T1 Train	T2 Train	T3 Train	T1 Test		✓	~	×
Replay	T1 Train	T2 Train	T3 Train	T1 Train	T1 Test	1	\checkmark	\checkmark
Remove	T2 Train	T3 Train	T1 Test			\checkmark	\checkmark	N/A
Paraphrase	T1 Train	T2 Train	T3 Train	C T1 Te	st	1	1	×



- Recency bias (Replay vs. Recall) and distraction (Baseline vs. **Random**) both contribute to the failures in Task Haystack.
- Recall vs. Remove: Models do locate and make use of the "needle" to some extent.
- Recall vs. Paraphrase: Models are sensitive to paraphrased instructions, indicating a lack of deeper understanding.

Additional Observations


- Failure cases are highly task-dependent. Tasks learned via ICL are more easily "forgotten". However different models tend to fail on different tasks.
- We observe positive task transfer in certain cases.

Part 1: Benchmarking Long-Context LMs

- GPT-40 still struggle in this setting, failing ~15% of the cases.
- Open models we evaluate further lack behind by a large margin, failing up to **61%** of the case.
- Nearly all models fall into the **undesired area**!

Needle-in-a-haystack-style Visualization

The original NIAH test does not tell the full story!

Part 2 (Continued) FILM-7B (32k) Mistral-7B (32k) 81 (% Accuracy 79 77 6-Task 4-Shot Avg. Baseline (Single-task ICL) 75 Random Repeat 73 Repeat+Shuffle 71

Repeating the Single-task ICL prompt leads to performance increase and then decrease! Is this "overfitting"?

16 32

- Do long inputs (regardless of the being relevant/Repeated or irrelevant/Random) give rise to undesired model behaviors?
- Paper: https://arxiv.org/abs/2407.16695

Repeat

16 32

Repeat

Website: https://inklab.usc.edu/lifelong-icl/

Github: https://github.com/INK-USC/Lifelong-IC