

Pre-training Text-to-Text Transformers for Concept-centric Common Sense

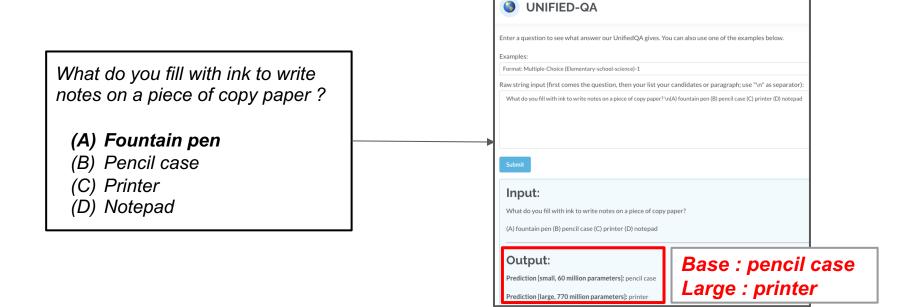
Wangchunshu Zhou*, Dong-Ho Lee*, Ravi Kiran Selvam, Seyeon Lee, Bill Yuchen Lin, Xiang Ren

* equal contribution

Commonsense Reasoning with PTLMs

What do you fill with ink to write notes on a piece of copy paper ?

(A) Fountain pen
(B) Pencil case
(C) Printer
(D) Notepad


Commonsense Reasoning with PTLMs

What do you fill with ink to write notes on a piece of copy paper ?

(A) Fountain pen
(B) Pencil case
(C) Printer
(D) Notepad

Commonsense Reasoning with PTLMs

AI2 Allen Institute for AI

Fails to reason with the concept-centric knowledge

Current PTLMs

PTLMs

		Al2 Allen Institute for Al	
Corpus		UNIFIED-QA Enter a question to see what answer our UnifiedQA gives. Yee	ou can also use one of the examples below.
Copy paper is thinner than printer paper, which doesn't make a huge difference when you're printing text, but it does when you're printing large images. Images require a lot of ink and because copy paper has a thinner structure, the ink will need to spread out more for the paper to absorb it all	Pre-train Text Infilling / MLM	Examples: Format: Multiple-Choice (Elementary-school-science)-1 Raw string input (first comes the question, then your list you What do you fill with ink to write notes on a piece of copy paper? Submit Input: What do you fill with ink to write notes on a piece of copy (A) fountain pen (B) pencil case (C) printer (D) notepad	n(A) fountain pen (B) pencil case (C) printer (D) notepad
		Output: Prediction [small, 60 million parameters]: pencil case Prediction [large, 770 million parameters]: printer	Base : pencil c Large : printer

The model may be **sensitive** to the **co-occurence (ink, copy, paper)**

How can we teach PTLMs to write and reason with Common sense Concepts ?

What do you fill with ink to write notes on a piece of copy paper?

(A) Fountain pen
(B) Pencil case
(C) Printer
(D) Notepad

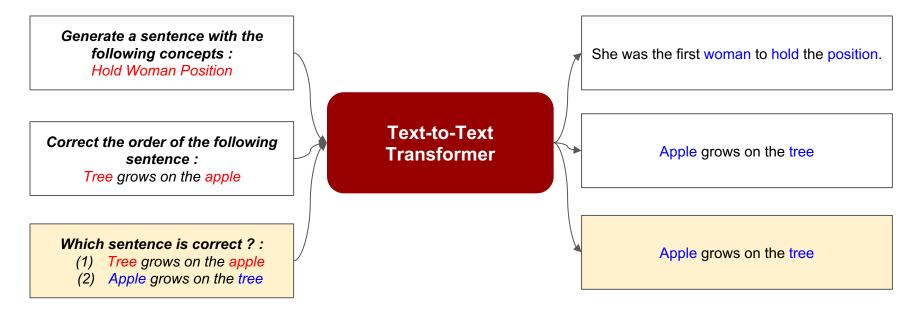
fill, ink, write, copy paper

Fountain Pen

Our idea : Novel Self-supervised Objectives to improve common sense reasoning ability.

Generative Objective : Concept-to-Sentence Generation (C2S) Ask model to recover the original sentence given only a few unordered keywords of the sentence.

Our idea : Novel Self-supervised Objectives to improve common sense reasoning ability.



Generative Objective : Concept Order Recovering (COR)

Ask model to recover the original sentence given order-of-concept shuffled sentence.

Our idea : Novel Self-supervised Objectives to improve common sense reasoning ability.

Discriminative Objective : Generative QA

Ask model to distinguish the real sentence from a concept-distracted sentence.

Original Sentence x

She was the first woman to hold the position.

```
Extract Concept Set C
(woman, hold, position)
```

(1) Given an input sentence *x* ("She was the first woman to hold the position."), extract concept-set *C* (woman, hold, position).

Original Sentence x

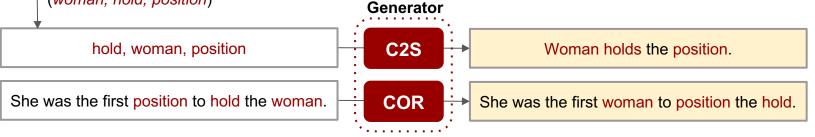
She was the first woman to hold the position.

Extract Concept Set *C* (woman, hold, position)

hold, woman, position

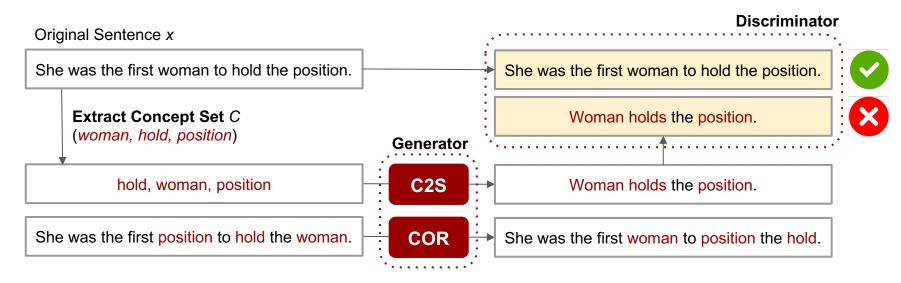
She was the first position to hold the woman.

- (1) Given an input sentence *x* ("She was the first woman to hold the position."), extract concept-set *C* (woman, hold, position).
- (1) Given x and C, produce corrupted source sentence x' either for C2S and COR

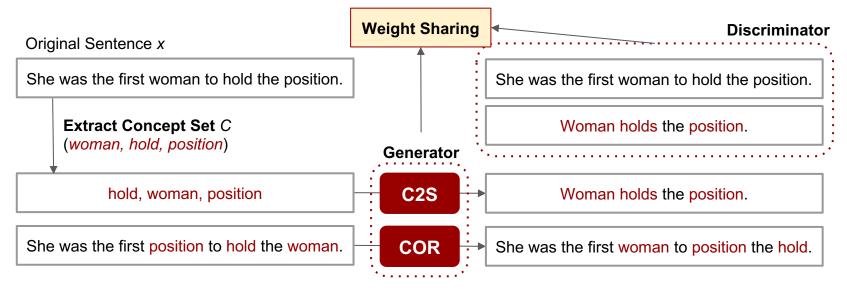


Original Sentence x

She was the first woman to hold the position.



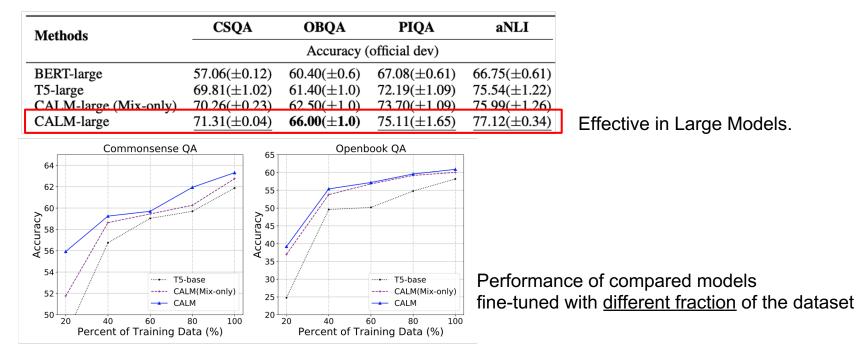
(woman, hold, position)


- (1) Given an input sentence x ("She was the first woman to hold the position."), extract concept-set C (woman, hold, position).
- Given x and C, produce corrupted source sentence x' either for C2S and COR
- The generator trained with C2S and COR recovers sentence x' to distractor x" (2)

- (1) Given an input sentence *x* (*"She was the first woman to hold the position."*), extract concept-set *C* (*woman, hold, position*).
- (1) Given *x* and *C*, produce corrupted source sentence *x*' either for **C2S** and **COR**
- (2) The generator trained with C2S and COR recovers sentence x' to distractor x"
- (3) The **discriminator** is trained to distinguish truth sentence from distractor x"

- (1) Given an input sentence *x* ("She was the first woman to hold the position."), extract concept-set *C* (woman, hold, position).
- (1) Given *x* and *C*, produce corrupted source sentence *x*' either for **C2S** and **COR**
- (2) The generator trained with C2S and COR recovers sentence x' to distractor x"
- (3) The **discriminator** is trained to distinguish truth sentence from distractor x"

Is CALM reason with concepts ? Yes !


Methods	CSQA	OBQA	PIQA	aNLI	
	Accuracy				
T5-base	61.88(±0.08)	58.20(±1.0)	68.14(±0.73)	61.10(±0.38)	
T5-base w/ additional epochs	61.92(±0.45)	58.10(±0.9)	68.19(±0.77)	61.15(±0.52)	
T5-base + SSM	62.08(±0.41)	58.30(±0.8)	68.27(±0.71)	61.25(±0.51)	
CALM (Generative-Only)	62.28(±0.36)	58.90(±0.4)	68.91(±0.88)	60.95(±0.46)	
CALM (Contrastive-Only)	62.73(±0.41)	59.30(±0.3)	70.67(±0.98)	61.35(±0.06)	
CALM (Mix-only)	63.02(±0.47)	$60.40(\pm 0.4)$	70.07(±0.98)	62.79(±0.55)	
CALM (w/o Mix warmup)	62.18(±0.48)	59.00(±0.5)	69.21(±0.57)	$\overline{61.25}(\pm 0.55)$	
CALM	63.32(±0.35)	60.90(±0.4)	71.01(±0.61)	63.20(±0.52)	

Experimental results on commonsense reasoning dataset.

CALM consistently and significantly <u>outperforms</u> the backbone T5-base model.

Is CALM reason with concepts ? Yes !

Performance is **consistent** in <u>large</u> model & <u>different fraction</u> of the dataset.

Is CALM write with concepts ? Yes !

Methods	Params	CommonGEN			
		BLEU-4	METEOR	CIDEr	SPICE
GPT-2 (Radford et al., 2019)	774M	21.10	26.20	12.15	25.90
UniLM (Dong et al., 2019)	340M	27.70	29.70	14.85	30.20
BART (Lewis et al., 2020)	406M	26.30	30.90	13.92	30.60
T5-Base (Raffel et al., 2019)	220M	16.40	23.00	9.16	22.00
T5-Large (Raffel et al., 2019)	770M	28.60	30.10	14.96	31.60
KG-BART (Liu et al., 2020)	406M	30.90	32.40	16.83	32.70
Our T5-Base	220M	24.90	31.20	12.99	32.40
CALM	220M	26.40	31.40	13.88	33.00

(Left) : Comparison between PTLMs (Below) : Comparison on generated sentences with same concept-set

Concept-set	T5-base	CALM
Grass, Dog, Ball, Chase	a dog is chased by a ball on the grass.	dog chasing a ball in the grass.
Net, Cast, Boat, Water	fishing boat casts a net in the water.	fisherman casts a net into the water from a fishing boat.
Hole, Tree, Plant, Dig	a man digs a hole in a tree to plant a new tree . he digs the	man digging a hole to plant a tree.
Ingredient, Add, Pan, Fry	a pan filled with ingredients adds a touch of spice to the fry.	add the ingredients to a pan and fry.
Water, Hold, Hand, Walk	A man holding a hand and walking in the water. A man is holding water.	man holding a bottle of water in his hand as he walks down the street.
Place, Use, Metal tool	A man uses a metal tool to make a piece of metal.	woman uses a metal tool to make a piece of jewelry.
Hair, Wax, Apply, Remove	remove the wax from your hair and apply it to your hair.	woman applies wax to her hair and then removes it with a comb.
Sidewalk, Dog, Walk, Leash	A dog walking on a leash on the sidewalk.	dog walking on a sidewalk with a leash.

Summary

• Novel self-supervised strategies for concept-centric Common Sense

- Concept to Sentence
- Concept Order Recovering
- Generative QA
- Two-stage training strategy
 - Generator and Discriminator

Text-to-Text models can be pre-trained with **better parameter** and **sample efficiency** by carefully designed **self-supervised objectives** that focus on the ability required by target tasks.