
AlpacaTag: An Active Learning-based Crowd Annotation
Framework for Sequence Tagging

Bill Yuchen Lin†∗ Dong-Ho Lee†∗ Frank F. Xu‡ Ouyu Lan† and Xiang Ren†
{yuchen.lin,dongho.lee,olan,xiangren}@usc.edu, frankxu@cmu.edu

†Computer Science Department ‡Language Technologies Institute
University of Southern California Carnegie Mellon University

Abstract

We introduce an open-source web-based data
annotation framework (AlpacaTag) for se-
quence tagging tasks such as named-entity
recognition (NER). The distinctive advantages
of AlpacaTag are three-fold. 1) Active in-
telligent recommendation: dynamically sug-
gesting annotations and sampling the most in-
formative unlabeled instances with a back-end
active learned model; 2) Automatic crowd
consolidation: enhancing real-time inter-
annotator agreement by merging inconsistent
labels from multiple annotators; 3) Real-time
model deployment: users can deploy their
models in downstream systems while new an-
notations are being made. AlpacaTag is
a comprehensive solution for sequence label-
ing tasks, ranging from rapid tagging with
recommendations powered by active learning
and auto-consolidation of crowd annotations
to real-time model deployment.

1 Introduction

Sequence tagging is a major type of tasks in natu-
ral language processing (NLP), including named-
entity recognition (detecting and typing entity
names), keyword extraction (e.g. extracting as-
pect terms in reviews or essential terms in queries),
chunking (extracting phrases), and word segmen-
tation (identifying word boundary in languages
like Chinese). State-of-the-art supervised ap-
proaches to sequence tagging are highly depen-
dent on numerous annotations. New annota-
tions are usually necessary for a new domain or
task, even though transfer learning techniques (Lin
and Lu, 2018) can reduce the amount of them
by reusing data of other related tasks. How-
ever, manually annotating sequences can be time-
consuming, expensive, and thus hard to scale.

∗Both authors contributed equally.

Backend Model

Consolidation & Incremental Training

Matching
Frequent NPs
+ Dictionary

Crowd Annotators

A batch of raw sentences

Recommendations

Crowd Annotations

Unlabeled Instances

Instance Sampling via
Active Learning

Real-time Deployment API

Complicated
Downstream
Systems

AlpacaTag

Figure 1: Overview of the AlpacaTag framework.

Therefore, it is still an important research ques-
tion that how we can develop a better annotation
framework to largely reduces human efforts.

Existing open-source sequence annotation tools
(Stenetorp et al., 2012; Druskat et al., 2014a;
de Castilho et al., 2016; Yang et al., 2018a) mainly
focus on enhancing the friendliness of user inter-
faces (UI) such as data management, fast tagging
with shortcut keys, supporting more platforms,
and multi-annotator analysis. We argue that there
are still three important yet underexplored direc-
tions of improvements: 1) active intelligent rec-
ommendation, 2) automatic crowd consolidation,
3) real-time model deployment. Therefore, we
propose a novel web-based annotation tool named
AlpacaTag1 to address these three problems.

Active intelligent recommendation (§3) aims
to reduce human efforts at both instance-level and
corpus-level by learning a back-end sequence tag-
ging model incrementally with incoming human
annotations. At the instance-level, AlpacaTag
applies the model predictions on current unlabeled
sentences as tagging suggestions. Apart from that,

1The source code is publicly available at http://
inklab.usc.edu/AlpacaTag/.

http://inklab.usc.edu/AlpacaTag/
http://inklab.usc.edu/AlpacaTag/

we also greedily match frequent noun phrases and
a dictionary of already annotated spans as recom-
mendations. Annotators can easily confirm or de-
cline such recommendations with our specialized
UI. At the corpus-level, we use active learning al-
gorithms (Settles, 2009) for selecting next batches
of instances to annotate based on the model. The
goal is to select the most informative instances for
human to tag and thus to achieve a more cost-
effective way of using human efforts.

Automatic crowd consolidation (§4) of the an-
notations from multiple annotators is an underex-
plored topic in developing crowd-sourcing annota-
tion frameworks. As a crowdsourcing framework,
AlpacaTag collects annotations from multiple
(non-expert) contributors with lower cost and a
higher speed. However, annotators usually have
different confidences, preferences, and biases in
annotating, which leads to possibly high inter-
annotator disagreement. It is shown very challeng-
ing to train models with such noisy crowd annota-
tions (Nguyen et al., 2017; Yang et al., 2018b). We
argue that consolidating crowd labels during an-
notating can lead annotators to achieve real-time
consensus, and thus decrease disagreement of an-
notations instead of exhausting post-processing.

Real-time model deployment (§5) is also a de-
sired feature for users. We sometimes need to
deploy a state-of-the-art sequence tagging model
while the crowdsourcing is still ongoing, such that
users can facilitate the developing of their tagging-
required systems with our APIs.

To the best of our knowledge, there is no ex-
isting annotation framework enjoying such three
features. AlpacaTag is the first unified frame-
work to address these problems, while inheriting
the advantages of existing tools. It thus provides
a more comprehensive solution to crowdsourcing
annotations for sequence tagging tasks.

In this paper, we first present the high-level
structure and design of the proposed AlpacaTag
framework. Three key features are then introduced
in detail: active intelligent recommendation (§3),
automatic crowd consolidation (§4), and real-time
model deployment (§5). Experiments (§6) are con-
ducted for showing the effectiveness of the pro-
posed three features. Comparisons with related
works are discussed in §7. Section §8 shows con-
clusion and future directions.

2 Overview of AlpacaTag

As shown in Figure 1, AlpacaTag has an ac-
tively learned back-end model (top-left) in addi-
tion to a front-end web-UI (bottom). Thus, we
have two separate servers: a back-end model
server and a front-end annotation server. The
model server is built with PyTorch and supports
a set of APIs for communications between the two
servers and model deployment. The annotation
server is built on Django in Python, which in-
teracts with administrators and annotators.

To start annotating for a domain of interest, ad-
mins should login and create a new project. Then,
they need to further import their raw corpus (with
CSV or JSON format), and assign the tag space
with associated colors and shortcut keys. Admins
can further set the batch size to sample instances
and to update back-end models. Annotators can
login and annotate (actively sampled) unlabeled
instances with tagging suggestions. We further
present our three key features in the next sections.

3 Active Intelligent Recommendation

This section first introduces the back-end model
(§3.1) and then presents how we use the back-
end model for both instance-level recommenda-
tions (tagging suggestions, §3.2) as well as corpus-
level recommendations (active sampling, §3.3).

3.1 Back-end Model: BLSTM-CRF
The core component of the proposed AlpacaTag
framework is the back-end sequence tagging
model, which is learned with an incremental
active learning scheme. We use the state-of-
the-art sequence tagging model as our back-end
model (Lample et al., 2016; Lin et al., 2017;
Liu et al., 2018), which is based on bidirectional
LSTM networks with a CRF layer (BLSTM-
CRF). It can capture character-level patterns, and
encode token sequences with pre-trained word em-
beddings, as well as using CRF layers to capture
structural dependencies in tagging. In this section,
we assume the model is fixed as we are talking
about how to use it for infer recommendations.
How to update it by consolidating crowd annota-
tions is illustrated in the Section §4.

3.2 Tagging Suggestions (Instance-level Rec.)
Apart from the inference results from the back-
end model on the sentences, we also include two
other kinds of tagging suggestions mentioned in

(a) the sentence and annotations are at the upper
section; tagging suggestions are shown as
underlined spans in the lower section.

(b) after click on a suggested span, a floating
window will show up near for confirming the types
(suggested type is bounded with red line).

(c) after click a suggested type or press a shortcut
key (e.g. ‘p’), confirmed annotations will show up
in the upper annotation section.

Figure 2: The workflow for annotators to confirm a
given tagging suggestion (“Hillary Clinton” as PER).

Fig. 1: (frequent) noun phrases and the dictionary
of already tagged spans. Specifically, after admins
upload raw corpora, AlpacaTag runs a phrase
mining algorithm (Shang et al., 2018) to gather
a list of frequent noun phrases, which are more
likely to be entities. Admins can also optionally
enable the framework to consider all noun phrases
by chunking as span candidates. These sugges-
tions are not typed. Additionally, we also maintain
a dictionary mapping from already tagged spans in
previous sentences to their majority tagged types.
Frequent noun phrases and dictionary entries are
matched by the greedy forward maximum match-
ing algorithm. Therefore, the final tagging sugges-
tions are merged from three sources with the fol-

lowing priority (ordered by their precision): dic-
tionary matches > back-end model inferences >
(frequent) noun phrases, while the coverage of the
suggestions are in the opposite order.

Figure 2 illustrates how AlpacaTag presents
the tagging suggestions for the sentence “Donald
Trump had a dinner with Hillary Clinton in the
white house.”. The two suggestions are shown
in the bottom section as underscored spans “Don-
ald Trump” and “Hilary Clinton” (Fig. 2a). When
annotators want to confirm “Hilary Clinton” as a
true annotation, they first click the span and then
click the right type in the appearing float window
(Fig. 2b). They can also press the customized
shortcut key for fast tagging. Note that the PER
button is underscored in Fig. 2b, meaning that it
is a recommended type for annotators to choose.
Fig. 2c shows that after confirming, it is added into
final annotations. We want to emphasize that our
designed UI well solves the problem of confirming
and declining suggestions. The float windows re-
duce mouse movement time very much and let an-
notators easily confirm or change types by clicking
or pressing shortcuts to correct suggested types.

What if annotators want to tag spans not recom-
mended? Normally annotating in AlpacaTag is
as friendly as other tools: annotators can simply
select the spans they want to tag in the upper sec-
tion and click or press the associated type (Fig. 3).
We implement this UI design based on an open-
source Django framework named doccano2.

1. select a span

3. get a tag2. click button or press shortcut key

Figure 3: Annotating a span without recommendations.

3.3 Active Sampling (Corpus-level Rec.)

Tagging suggestions are at the instance level,
while what instances we should ask annotators
to label is also very important to save human
efforts. Thus, the research question here is
how to actively sample a set of the most infor-
mative instances from the whole unlabeled sen-
tences, which is named active learning. The
measure of informativeness is usually specific

2http://doccano.herokuapp.com/

http://doccano.herokuapp.com/

to an existing model, which means what in-
stances (if labeled correctly) can improve the
model performance. A typical example of ac-
tive learning is called Least Confidence (Culotta
and McCallum, 2005), which applies the model
on all the unlabeled sentences and treats the in-
ference confidence as the negative of informa-
tiveness (1 − maxy1,...,yn P [y1, . . . , yn| {xij}]).
For AlpacaTag, we apply an improved version
named Maximum Normalized Log-Probability
(MNLP) (Shen et al., 2018), which eliminates the
effect of length of sequences by averaging:

max
y1,...,yn

1

n

n∑
i=1

logP [yi|y1, . . . , yn−1, {xij}]

Simply put, we manage to utilize the current
back-end model for measuring the informative-
ness of unlabeled sentences and then sample the
optimal next batch for annotators to label.

4 Automatic Crowd Consolidation

As a crowd-sourcing annotation framework,
AlpacaTag aims to reduce inter-annotator dis-
agreement while keeping their individual strengths
in labeling specific kinds of instances. We achieve
this by applying annotator-specific back-end mod-
els (“personal models”) and consolidate them
into a shared back-end model named “consensus
model”. Personal models are used for personal-
ized active sampling, such that annotators will la-
bel the regions of data space that are most impor-
tant to be labeled by them respectively.

Assume there are K annotators, we refer them
as {A1, . . . , AK}. For each annotator Ai, we refer
the corresponding sentences and annotations pro-
cessed by it to be xi = {xi,j}lij=1 and yAi

i ∈ Y li .
The target of consolidation is to generate predic-
tions for the test data x, while the resulting labels
are referred as ŷ. Note that annotators may an-
notate different portions of the data and sentences
can have inconsistent crowd labels.

As shown in Fig. 4, we model the behav-
ior of every annotator by constructing annota-
tor representation matrices Ck from the network
parameters of personal back-end models. The
personal models share the same BLSTM lay-
ers for encoding sentences and avoiding over-
parameterizing. They are incrementally updated
every batch, which usually consists of 50 ∼ 100
sentences sampled actively by the algorithms men-
tioned in §3.3. We further merge the crowd repre-

Crowd Annotations
ConsolidationT

ag
gi
ng
Su
gg
es
ti
on
s

Personal Models

Consensus Model

A
ctive

Sam
pling

sentence

BLSTM

Linear

tags scores

CRF

tag sequence

Annotator
Representation

Incremental Training

Figure 4: Reducing inter-annotator disagreement by
training personal models for personalized active sam-
pling and constructing consensus models.

sentation Ck into a representation matrix C, and
thus construct a consensus model by using C to
generate tag scores in the BLSTM-CRF architec-
ture, which is improved from the approach pro-
posed by Nguyen et al. (2017).

In summary, AlpacaTag periodically updates
the back-end consensus model by consolidat-
ing crowd annotations for annotated sentences
through merging personal models. The updated
back-end model continues to offer suggestions in
future instances for all the annotators, and thus
the consensus can be further solidified with rec-
ommendation confirmations.

5 Real-time Model Deployment

Waiting for a model to be trained with ready hu-
man annotations can be a huge bottleneck for de-
veloping complicated pipeline systems in infor-
mation extraction. Instead, users may want a se-
quence tagging model that can be constantly up-
dated, even when the annotation process is still un-
dergoing. AlpacaTag naturally enjoys this fea-
ture since we maintain a back-end tagging model
with incremental active learning techniques.

Thus, we provide a suite of APIs for interacting
with the back-end consensus model server. They
can work for both communication with the annota-
tion server and real-time deployment of the back-
end model. One can obtain inference results for
their developing complicated systems by querying
such APIs for downstream applications.

6 Experiments

To investigate the performance of our imple-
mented back-end model with incremental active
learning and consolidation, we conduct a prelim-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700 800 900 1000

F
1

-s
co

re
 (

%
)

Number of Instances

w/o active sampling
w/ active sampling

Figure 5: Effectiveness of incremental updating with
and without active sampling.

inary experiment on the CoNLL2003 dataset. We
set iteration step size as 100 with the default order
for single-user annotation, and incrementally up-
date the back-end model for 10 iterations. Then,
we apply our implementation for active sampling
the optimal batches of samples to annotate dynam-
ically. All results are tested on the official test set.

As shown in Fig. 5, the performance with active
learning is indeed improved by a large margin over
vanilla training effectively. We also find that with
active sampling, using annotations of about 35%
training data can achieve the performance of using
100%, confirming the reported results of previous
studies (Siddhant and Lipton, 2018).

For consolidating multiple annotations, we test
our implementation with the real-world crowd-
sourced data collected by Rodrigues et al. (2013)
using Amazon Mechanical Turk (AMT). Our
methods outperform existing approaches includ-
ing MVT-SLM (Wang et al., 2018) and Crowd-
X (Nguyen et al., 2017) (see Tab. 1).

7 Related Works

Many sequence annotation tools have been de-
veloped (Ogren, 2006; Bontcheva et al., 2013;
Chen and Styler, 2013; Druskat et al., 2014b)
for basic annotation features including data man-
agement, shortcut key annotation, and multi-
annotation presentation and analysis. However,

Methods Precision(%) Recall(%) F1(%)

MVT-SLM 88.88(±0.25) 65.04(±0.80) 75.10(±0.44)
Crowd-Add 89.74(±0.10) 64.50(±1.48) 75.03(±1.02)
Crowd-Cat 89.72(±0.47) 63.55(±1.20) 74.39(±0.98)

Ours 88.77(±0.25) 72.79(±0.04) 79.99(±0.08)

Gold 92.12(±0.31) 91.73(±0.09) 91.92(±0.21)

Table 1: Comparisons of consolidation methods.

few of them enjoys the above-introduced three fea-
tures of AlpacaTag. It is true that a few existing
tools also support tagging suggestions (instance-
level recommendations) as follows:
• BRAT (Stenetorp et al., 2012) and
GATE (Bontcheva et al., 2013) can offer
suggestions with a fixed tagging model like
CoreNLP (Manning et al., 2014). However,
it is hardly helpful when users need to
annotate sentences with customized label set
specific to their interested domains, which is
the most common motivation for people to
use an annotation framework.
• YEDDA (Yang et al., 2018a) simply generates

suggestions by exact matching against a con-
tinuously updated lexicon of already anno-
tated spans. In comparison, this is a subset
of AlpacaTag’s recommendations. Note
that YEDDA cannot suggest any unseen spans.
• WebAnno (Yimam et al., 2013) integrates a

learning component for suggestions, which
is based on hand-crafted features and
generic online learning framework (MIRA).
Nonetheless, the back-end model is too far
away from the state-of-the-art methods for
sequence tagging and hard to customize for
consolidation and real-time deployment.

AlpacaTag’s tagging suggestions are more
comprehensive since they are from state-of-the-
art BLSTM-CRF architecture, annotation dictio-
nary, and frequent noun phrase mining. An unique
advantage is that it also supports active learn-
ing to sample instances that are most worth la-
beling to reduce human efforts. In addition,
AlpacaTag further attempts to reduce inter-
annotator disagreement during annotating by au-
tomatically consolidating personal models to con-
sensus models, which pushes further than just pre-
senting inter-annotator agreement without doing
anything helpful.

While recent papers have shown the power
of deep active learning with simulations (Sid-
dhant and Lipton, 2018), a practical annota-
tion framework with active learning is missing.
AlpacaTag is not only an annotation framework
but also a practical environment for evaluating dif-
ferent active learning methods.

8 Conclusion and Future Directions

To sum up, we propose an open-source web-based
annotation framework AlpacaTag that provides

users with more advanced features for reducing
human efforts in annotating, while keeping the
existing basic annotation functions like shortcut
keys. Incremental active learning of back-end
models with crowd consolidation facilities intel-
ligent recommendations and reduce disagreement.

Future directions include supporting annotation
of other tasks, such as relation extraction and event
extraction. We also plan to design a real-time con-
sole for showing the status of back-end models
based on TensorBoard, such that admins can bet-
ter track the quality of deployed models and early
stop annotating to save human efforts.

References
Kalina Bontcheva, Hamish Cunningham, Ian Roberts,

Angus Roberts, Valentin Tablan, Niraj Aswani, and
Genevieve Gorrell. 2013. Gate teamware: a web-
based, collaborative text annotation framework. In
Proc. of LREC.

Richard Eckart de Castilho, Éva Mújdricza-Maydt,
Seid Muhie Yimam, Silvana Hartmann, Iryna
Gurevych, Anette Frank, and Christian Biemann.
2016. A web-based tool for the integrated annota-
tion of semantic and syntactic structures. In Proc. of
LT4DH@COLING.

Wei-Te Chen and Will Styler. 2013. Anafora: a web-
based general purpose annotation tool. In Proc. of
NAACL-HLT.

Aron Culotta and Andrew McCallum. 2005. Con-
fidence estimation for information extraction. In
Proc. of AAAI.

Stephan Druskat, Lennart Bierkandt, Volker Gast,
Christoph Rzymski, and Florian Zipser. 2014a.
Atomic: an open-source software platform for
multi-level corpus annotation. In KONVENS.

Stephan Druskat, Lennart Bierkandt, Volker Gast,
Christoph Rzymski, and Florian Zipser. 2014b.
Atomic: An open-source software platform for
multi-level corpus annotation.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proc. of NAACL-HLT.

Bill Y. Lin, Frank F. Xu, Zhiyi Luo, and Kenny Q. Zhu.
2017. Multi-channel bilstm-crf model for emerg-
ing named entity recognition in social media. In
NUT@EMNLP.

Bill Yuchen Lin and Wei Lu. 2018. Neural adapta-
tion layers for cross-domain named entity recogni-
tion. In Proc. of EMNLP.

Liyuan Liu, Jingbo Shang, Frank F. Xu, Xiang Ren,
Huan Gui, Jian Peng, and Jiawei Han. 2018. Em-
power sequence labeling with task-aware neural lan-
guage model. In Proc. of AAAI.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proc. of ACL.

An Thanh Nguyen, Byron C. Wallace, Junyi Jessy Li,
Ani Nenkova, and Matthew Lease. 2017. Aggregat-
ing and predicting sequence labels from crowd an-
notations. Proc. of ACL.

Philip V Ogren. 2006. Knowtator: a protégé plug-
in for annotated corpus construction. In Proc. of
NAACL-HLT.

Filipe Rodrigues, Francisco C. Pereira, and Bernardete
Ribeiro. 2013. Sequence labeling with multiple an-
notators. Machine Learning.

Burr Settles. 2009. Active learning literature survey.
Technical report, University of Wisconsin-Madison
Department of Computer Sciences.

Jingbo Shang, Jialu Liu, Meng Jiang, Xiang Ren,
Clare R. Voss, and Jiawei Han. 2018. Automated
phrase mining from massive text corpora. Proc. of
TKDE.

Yanyao Shen, Hyokun Yun, Zachary C Lipton, Yakov
Kronrod, and Animashree Anandkumar. 2018.
Deep active learning for named entity recognition.
In Proc. of ICLR.

Aditya Siddhant and Zachary Chase Lipton. 2018.
Deep bayesian active learning for natural language
processing: Results of a large-scale empirical study.
In Proc. of EMNLP.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for NLP-assisted
text annotation. In Proc. of EACL.

Xuan Wang, Yu Zhang, Xiang Ren, Yuhao Zhang,
Marinka Zitnik, Jingbo Shang, Curtis P. Langlotz,
and Jiawei Han. 2018. Cross-type biomedical
named entity recognition with deep multi-task learn-
ing. Bioinformatics.

Jie Yang, Yue Zhang, Linwei Li, and Xingxuan Li.
2018a. Yedda: A lightweight collaborative text span
annotation tool. In Proc. of ACL.

YaoSheng Yang, Meishan Zhang, Wenliang Chen, Wei
Zhang, Haofen Wang, and Min Zhang. 2018b. Ad-
versarial learning for chinese ner from crowd anno-
tations. In Proc. of AAAI.

Seid Muhie Yimam, Iryna Gurevych, Richard Eckart
de Castilho, and Christian Biemann. 2013. We-
banno: A flexible, web-based and visually supported
system for distributed annotations. In Proc. of ACL.

